Methane and Nutrient Salts from Waste Biomass: Development of a Catalytic Conversion Process in Supercritical Water

Andrew Peterson^{a,b,#}, Maurice Waldner^{b,c}, Morgan Froling^a, Frédéric Voqel^b, Jefferson Tester^a

^aMassachusetts Institute of Technology, Cambridge, MA, USA.

^bPaul Scherrer Institut, Villigen, Switzerland. °Swiss Federal Institute of Technology, Zurich (ETH-Zurich), Switzerland.

Vision

Synthetic natural gas (SNG) can potentially be produced from biomass (liquid manure, wood) by a hydrothermal process. The hydrothermal route carries two major advantages over conventional gasification:

- 1. Drying is unnecessarry.
- 2. Nutrient salts are recovered.

Experimental

- •Solids content ≤ 30%.
- •Batch reactor, Raney nickel catalyst.
- •400°C, 300 bar. Supercritical.

Results

Gas composition achieved:

Ongoing Work

➤ Salt separation studies in supercritical water.

In-situ visualization using neutron radiography.

Finite-element modeling of fluid flow and heat transfer.

Realization of continuous process.

Gasification of liquid model systems with same C-H-O composition in biomass in continuous test rig.

Salt separation in continuous fashion, preliminary design.

Pumping of real biomass slurry, up to 20% solids, ground to $xD \le 100$ microns.

Environmental systems analysis.

Chemical process simulation (ASPEN+) and life-cycle assessment will be used to optimize the environmental performance of the process in a systems perspective.